调和级数发散 可以用 等比数列求和公式积分 证明,也可以用 泰勒级数 证明,去年夏初我在 高级民科吧 发了一个帖子,讨论 数学吧 的一题,还没写完,未完的内容里会写 等比数列求和公式积分 证明调和级数发散 和 泰勒级数 证明调和级数发散 。
也就是说,调和级数发散 可以用数学推导证明,或,证明调和级数收敛或发散需要数学证明 。
前几天好像看到什么题型于是又想到还可以这样证明调和级数发散,也许我记错了,总之经常看 数学题 数学吧 的话,说不定看到什么题型,又可以导出调和级数,于是又能从这种题型证明调和级数发散 。
我想说的是,楼主 三小阿姨 提的课题都很好,激动人心,但是对这些课题的研究和批评要提高点技术水平,是亟待提高,都喊了这么多年了,早就应该提高了 。
三小阿姨 证明调和级数收敛和 “官科没有认识到调和级数是收敛的” 的方法,我看过一点,没看太全,也没太懂,好像是计算很多项,然后就说,已经计算了很多项了,调和级数的和增长很小,后面的项也很小很小,不具备无限增长的可能,大概是这样 ?反正我是没看懂 。
然后,三小阿姨 就大喊,“看看,还可以计算,精度达到,十万,百万。官科 对 调和级数收敛 和 1 + 1/2 + 1/3 + 1/n ≠ ln n + c 的事实视而不见 !”
楼上(46 楼),就算把 k 、n 都当作变量,所有的项可以写成一个二维数组(二维行列式 / 矩阵),把所有这些项都用上,尽管折腾,怎么得出调和级数收敛这个结果 ?
还有 45 楼那个证明,没有 学生党 给你指出问题在哪里吗 ? @0.9循环没有末位 @ 血源萌新☜ @ suhao233 @ dons222 @谷风天音厨 @这么有意思吗
45 楼是 @平阳睡狮郭峰君 的话题,2019 年底我刚来反相吧,@拓变论@李炳铁 给出过证明,我看过,也自己做过,还写过帖子,明天找出来给你们看看 。
也就是说,调和级数发散 可以用数学推导证明,或,证明调和级数收敛或发散需要数学证明 。
前几天好像看到什么题型于是又想到还可以这样证明调和级数发散,也许我记错了,总之经常看 数学题 数学吧 的话,说不定看到什么题型,又可以导出调和级数,于是又能从这种题型证明调和级数发散 。
我想说的是,楼主 三小阿姨 提的课题都很好,激动人心,但是对这些课题的研究和批评要提高点技术水平,是亟待提高,都喊了这么多年了,早就应该提高了 。
三小阿姨 证明调和级数收敛和 “官科没有认识到调和级数是收敛的” 的方法,我看过一点,没看太全,也没太懂,好像是计算很多项,然后就说,已经计算了很多项了,调和级数的和增长很小,后面的项也很小很小,不具备无限增长的可能,大概是这样 ?反正我是没看懂 。
然后,三小阿姨 就大喊,“看看,还可以计算,精度达到,十万,百万。官科 对 调和级数收敛 和 1 + 1/2 + 1/3 + 1/n ≠ ln n + c 的事实视而不见 !”
楼上(46 楼),就算把 k 、n 都当作变量,所有的项可以写成一个二维数组(二维行列式 / 矩阵),把所有这些项都用上,尽管折腾,怎么得出调和级数收敛这个结果 ?
还有 45 楼那个证明,没有 学生党 给你指出问题在哪里吗 ? @0.9循环没有末位 @ 血源萌新☜ @ suhao233 @ dons222 @谷风天音厨 @这么有意思吗
45 楼是 @平阳睡狮郭峰君 的话题,2019 年底我刚来反相吧,@拓变论@李炳铁 给出过证明,我看过,也自己做过,还写过帖子,明天找出来给你们看看 。