潘德的预言吧 关注:80,173贴子:3,003,365
  • 5回复贴,共1

关于伤害种类——用AI写了代码列表展示

只看楼主收藏回复

不说废话,上图




IP属地:北京1楼2024-03-31 00:19回复
    代码
    # Set up the ranges for armor and base damage
    armor_values = np.arange(0, 110, 10) # Armor values from 0 to 100, incremented by 10
    base_damage_values = np.arange(10, 110, 10) # Base damage values from 10 to 100, incremented by 10
    # Initialize dictionaries to hold the data for graphs and tables
    graphs = {}
    tables = {}
    # Calculate the data for each damage type
    for damage_type in ['Cut', 'Pierce', 'Blunt']:
    graph_data = np.zeros((len(armor_values), len(base_damage_values)))
    table_data = []
    for i, armor in enumerate(armor_values):
    for j, base_damage in enumerate(base_damage_values):
    damage = calculate_damage(base_damage, armor, damage_type)
    graph_data[i, j] = damage
    table_data.append([armor, base_damage, damage])
    # Create a graph for each damage type
    plt.figure(figsize=(8, 6))
    sns.heatmap(graph_data, annot=True, fmt='.1f', cmap='viridis',
    xticklabels=base_damage_values, yticklabels=armor_values)
    plt.title(f'{damage_type} Damage')
    plt.xlabel('Base Damage')
    plt.ylabel('Armor')
    plt.show()
    # Create a table for each damage type
    tables[damage_type] = pd.DataFrame(table_data, columns=['Armor', 'Base Damage', 'Calculated Damage'])
    tables['Cut'], tables['Pierce'], tables['Blunt']


    IP属地:北京2楼2024-03-31 00:22
    回复
      这个是在计算速度加成、和属性技能之前的计算结果。
      发现上面的结果是使用了战团原版的公式,潘德的系数不一样,查证后更新如下:




      IP属地:北京3楼2024-03-31 00:40
      回复
        能打中文么


        IP属地:广西5楼2024-03-31 01:41
        收起回复
          确实能打中文吗


          IP属地:广东来自Android客户端6楼2024-03-31 01:48
          回复