clear
clc
close all
% format compact
%% 加载数据
load maydata.mat
% load MNISTdata.match
% ann_data
[input,inputps]=mapminmax(ann_data,-1,1);
[output,outputps]=mapminmax(ann_label,0,1);
% [input,inputps]=mapminmax(ann_data,0,1);
% [output,outputps]=mapminmax(ann_label,0,1);
%%
input1=input';%
input = [input1 input1(:,10)];
%%
for i=1:size(input,1)
x=reshape(input(i,:),6,6);
input_x(:,:,i)=x;
end
%%
n = randperm(5000);
train_x=input_x(:,:,n);
train_y=output(:,n);
test_x=input_x(:,:,n(4501:5000));
test_y=output(:,n(4501:5000));
%% 创建一个经典Lenet(卷积神经网络中代表模型,如lenet、alexnet,vgg16,resnet等)
% rand('state',0)
cnn.layers = {
%第一层
struct('type', 'i') %输入层
%第二层
struct('type', 'c', 'outputmaps', 9, 'kernelsize', 3) %卷积层--相当于隐含层节点为9
% 卷积后的图像大小为(4-3+1)*(4-3+1)=2*2
struct('type', 's', 'scale', 2) %池化层 利用一个2*2的池化层把卷积后的图像降维原来的一半
% (2/2)*(2/2)=1*1
};
%% 训练 CNN
% 参数设置
opts.alpha = 0.5;% 学习率
opts.batchsize = 20; %批训练大小 batchsize整数倍必须是总训练样本大小,选择更小的批数据 这样计算的更快,电脑所需内存也会大幅减小
opts.numepochs = 200;%学习迭代次数
cnn = cnnsetup(cnn, train_x, train_y);
cnn = cnntrain(cnn, train_x, train_y, opts);
% % 训练误差曲线
figure
plot(cnn.rL)
xlabel('训练次数次数')
ylabel('误差')
title('训练误差曲线')
%% 测试模型有效性
% load net_cnn
% 训练集
% [er1, bad1 , a1, h1] = cnntest(cnn, train_x, train_y);
% h1=(mapminmax('reverse',h1,outputps));
% a1=(mapminmax('reverse',a1,outputps));
% disp('展示CNN训练集精度')
% figure
% plot(h1,'r-o')
% hold on
% plot(a1,'k--*')
% legend('预测输出','期望输出')
% xlabel('样本数/个')
% ylabel('标签类别')
% title('CNN网络输出与期望输出对比--训练集')
% 测试集
[er2, bad2 , a2, h2] = cnntest(cnn, test_x, test_y);
% disp('展示CNN测试集精度')
[~,h2]=max(mapminmax('reverse',h2,outputps));
[~,a2]=max(mapminmax('reverse',a2,outputps));
[a2,mx] = sort(a2);
h2 = h2(mx);
figure
plot(a2(1,:),'r-*')
hold on
plot(h2(1,:),'b-o')
hold off
legend('期望输出','预测输出')
xlabel('样本')
ylabel('手写体')
title('CNN网络输出与期望输出对比--测试集')
figure
plot(er2(1,:),'k-*')
ylabel('PPX误差')
zhunquelv = sum(a2==h2)/length(h2)
clc
close all
% format compact
%% 加载数据
load maydata.mat
% load MNISTdata.match
% ann_data
[input,inputps]=mapminmax(ann_data,-1,1);
[output,outputps]=mapminmax(ann_label,0,1);
% [input,inputps]=mapminmax(ann_data,0,1);
% [output,outputps]=mapminmax(ann_label,0,1);
%%
input1=input';%
input = [input1 input1(:,10)];
%%
for i=1:size(input,1)
x=reshape(input(i,:),6,6);
input_x(:,:,i)=x;
end
%%
n = randperm(5000);
train_x=input_x(:,:,n);
train_y=output(:,n);
test_x=input_x(:,:,n(4501:5000));
test_y=output(:,n(4501:5000));
%% 创建一个经典Lenet(卷积神经网络中代表模型,如lenet、alexnet,vgg16,resnet等)
% rand('state',0)
cnn.layers = {
%第一层
struct('type', 'i') %输入层
%第二层
struct('type', 'c', 'outputmaps', 9, 'kernelsize', 3) %卷积层--相当于隐含层节点为9
% 卷积后的图像大小为(4-3+1)*(4-3+1)=2*2
struct('type', 's', 'scale', 2) %池化层 利用一个2*2的池化层把卷积后的图像降维原来的一半
% (2/2)*(2/2)=1*1
};
%% 训练 CNN
% 参数设置
opts.alpha = 0.5;% 学习率
opts.batchsize = 20; %批训练大小 batchsize整数倍必须是总训练样本大小,选择更小的批数据 这样计算的更快,电脑所需内存也会大幅减小
opts.numepochs = 200;%学习迭代次数
cnn = cnnsetup(cnn, train_x, train_y);
cnn = cnntrain(cnn, train_x, train_y, opts);
% % 训练误差曲线
figure
plot(cnn.rL)
xlabel('训练次数次数')
ylabel('误差')
title('训练误差曲线')
%% 测试模型有效性
% load net_cnn
% 训练集
% [er1, bad1 , a1, h1] = cnntest(cnn, train_x, train_y);
% h1=(mapminmax('reverse',h1,outputps));
% a1=(mapminmax('reverse',a1,outputps));
% disp('展示CNN训练集精度')
% figure
% plot(h1,'r-o')
% hold on
% plot(a1,'k--*')
% legend('预测输出','期望输出')
% xlabel('样本数/个')
% ylabel('标签类别')
% title('CNN网络输出与期望输出对比--训练集')
% 测试集
[er2, bad2 , a2, h2] = cnntest(cnn, test_x, test_y);
% disp('展示CNN测试集精度')
[~,h2]=max(mapminmax('reverse',h2,outputps));
[~,a2]=max(mapminmax('reverse',a2,outputps));
[a2,mx] = sort(a2);
h2 = h2(mx);
figure
plot(a2(1,:),'r-*')
hold on
plot(h2(1,:),'b-o')
hold off
legend('期望输出','预测输出')
xlabel('样本')
ylabel('手写体')
title('CNN网络输出与期望输出对比--测试集')
figure
plot(er2(1,:),'k-*')
ylabel('PPX误差')
zhunquelv = sum(a2==h2)/length(h2)