15 已知集合M={a,a+d,a+2d},N={a,aq,aq2},其中a≠0,M=N,求q的值.
原题目来源:不详,是在百度文库上看到的
1 q > 0:
1 d > 0
a = a ① , a + d = aq ②, a + 2d = aq^2 ③
由②:q = (a + d) / a = 1 + d / a ④
把④代入③: a + 2d = a * (1 + d / a) <=> 2d = a * (d / a) <=> d = 2d <=> 0 = d ⑤
把⑤代入②:q = 1 ⑥ N 不满足 互异性, 矛盾
2 d < 0:
a + 2d = a ①, a + d = aq ②, a = aq^2 ③
由①: d = 0(与 d < 0矛盾)
2 q < 0:
例如 q = -1 N = {a, -a, a} (不满足互异性)
当 a > 0 , a * q < a * (q^2) < a
当 d = 0 集合M 不满足互异性
当 d > 0: a = aq ① 即(q - 1)a = 0 <=> a = 0 与 题设 矛盾
当 d < 0: a + 2d = a * q ① (q - 1) * a = 2d <=> aq - a = 2d <=> q = 2d + 1①
a * (q^2) = a + d <=> q^2 = 1 + d/a①
a + 2d = a 即 d = 0 与 d < 0 矛盾
当 a < 0 , 当 q = 1 时, N 不满足 互异性
当 q > 1 时,N = {aq^2, aq, a}
1 .当 d > 0 M = {a, a + d, a + 2d}
{aq^2 = a; aq = a + d; a = a + 2d}
d = 0 与 d < 0 矛盾
2. 当 d = 0 时, M 不是 集合(互异性)
3. 当 d < 0 时, M = {a + 2d, a + d, a + d}, N = {aq^2, aq, a}
{a + 2d = aq^2; a + d = aq; a + d = a}
d = 0 与 d < 0 矛盾
......
当 q = -1, N = {a, -a, a} 不是集合
当 q < -1
if a > 0: M = {a, a + d, a + 2 * d}
N = {aq, a, a(q^2)}
{a = aq; a + d = a; a + 2 * d = a(q^2)}
q = 1(矛盾)
else:
太麻烦了,直接解方程吧
q 可能小于 1 && 不可能等于 0 && q 不可能大于 1 && q 不可能大于 0
即 -1 < q < 0
M = {a, a + d, a + 2d}
特别地,令 q = -0.5, N = {a, -0.5a, 0.25a}
if a > 0:
N = {-0.5a , 0.25a , a}, M = {a, a + d, a + 2d}
else:(即 a < 0 )
N = {a, 0.25a, -0.5a}, M = {a, a + d, a + 2d}
一般地:
#1
if a > 0:
N = {qa , (q^2)a , a}, M = {a, a + d, a + 2d}
#2
else:(即 a < 0 )
N = {a, (q^2)a, qa}, M = {a, a + d, a + 2d}
M = N, 顺序一一对应
#1qa = a①; (q^2)a = a + d②; a = a + 2d③;
由①, q = 1 矛盾
#2a = a①; (q^2)a = a + d②; a = a + 2d③;
d = 0, a = a
M = {a, a, a} (不满足互异性)矛盾
综上 答案是无解即空集
PS:以上解法仅供参考,可能有漏洞。
原题目来源:不详,是在百度文库上看到的
1 q > 0:
1 d > 0
a = a ① , a + d = aq ②, a + 2d = aq^2 ③
由②:q = (a + d) / a = 1 + d / a ④
把④代入③: a + 2d = a * (1 + d / a) <=> 2d = a * (d / a) <=> d = 2d <=> 0 = d ⑤
把⑤代入②:q = 1 ⑥ N 不满足 互异性, 矛盾
2 d < 0:
a + 2d = a ①, a + d = aq ②, a = aq^2 ③
由①: d = 0(与 d < 0矛盾)
2 q < 0:
例如 q = -1 N = {a, -a, a} (不满足互异性)
当 a > 0 , a * q < a * (q^2) < a
当 d = 0 集合M 不满足互异性
当 d > 0: a = aq ① 即(q - 1)a = 0 <=> a = 0 与 题设 矛盾
当 d < 0: a + 2d = a * q ① (q - 1) * a = 2d <=> aq - a = 2d <=> q = 2d + 1①
a * (q^2) = a + d <=> q^2 = 1 + d/a①
a + 2d = a 即 d = 0 与 d < 0 矛盾
当 a < 0 , 当 q = 1 时, N 不满足 互异性
当 q > 1 时,N = {aq^2, aq, a}
1 .当 d > 0 M = {a, a + d, a + 2d}
{aq^2 = a; aq = a + d; a = a + 2d}
d = 0 与 d < 0 矛盾
2. 当 d = 0 时, M 不是 集合(互异性)
3. 当 d < 0 时, M = {a + 2d, a + d, a + d}, N = {aq^2, aq, a}
{a + 2d = aq^2; a + d = aq; a + d = a}
d = 0 与 d < 0 矛盾
......
当 q = -1, N = {a, -a, a} 不是集合
当 q < -1
if a > 0: M = {a, a + d, a + 2 * d}
N = {aq, a, a(q^2)}
{a = aq; a + d = a; a + 2 * d = a(q^2)}
q = 1(矛盾)
else:
太麻烦了,直接解方程吧
q 可能小于 1 && 不可能等于 0 && q 不可能大于 1 && q 不可能大于 0
即 -1 < q < 0
M = {a, a + d, a + 2d}
特别地,令 q = -0.5, N = {a, -0.5a, 0.25a}
if a > 0:
N = {-0.5a , 0.25a , a}, M = {a, a + d, a + 2d}
else:(即 a < 0 )
N = {a, 0.25a, -0.5a}, M = {a, a + d, a + 2d}
一般地:
#1
if a > 0:
N = {qa , (q^2)a , a}, M = {a, a + d, a + 2d}
#2
else:(即 a < 0 )
N = {a, (q^2)a, qa}, M = {a, a + d, a + 2d}
M = N, 顺序一一对应
#1qa = a①; (q^2)a = a + d②; a = a + 2d③;
由①, q = 1 矛盾
#2a = a①; (q^2)a = a + d②; a = a + 2d③;
d = 0, a = a
M = {a, a, a} (不满足互异性)矛盾
综上 答案是无解即空集
PS:以上解法仅供参考,可能有漏洞。