数学吧 关注:889,430贴子:8,746,977
  • 10回复贴,共1

一道麻烦的集合论题目

只看楼主收藏回复

15 已知集合M={a,a+d,a+2d},N={a,aq,aq2},其中a≠0,M=N,求q的值.
原题目来源:不详,是在百度文库上看到的
1 q > 0:
1 d > 0
a = a ① , a + d = aq ②, a + 2d = aq^2 ③
由②:q = (a + d) / a = 1 + d / a ④
把④代入③: a + 2d = a * (1 + d / a) <=> 2d = a * (d / a) <=> d = 2d <=> 0 = d ⑤
把⑤代入②:q = 1 ⑥ N 不满足 互异性, 矛盾
2 d < 0:
a + 2d = a ①, a + d = aq ②, a = aq^2 ③
由①: d = 0(与 d < 0矛盾)
2 q < 0:
例如 q = -1 N = {a, -a, a} (不满足互异性)
当 a > 0 , a * q < a * (q^2) < a
当 d = 0 集合M 不满足互异性
当 d > 0: a = aq ① 即(q - 1)a = 0 <=> a = 0 与 题设 矛盾
当 d < 0: a + 2d = a * q ① (q - 1) * a = 2d <=> aq - a = 2d <=> q = 2d + 1①
a * (q^2) = a + d <=> q^2 = 1 + d/a①
a + 2d = a 即 d = 0 与 d < 0 矛盾
当 a < 0 , 当 q = 1 时, N 不满足 互异性
当 q > 1 时,N = {aq^2, aq, a}
1 .当 d > 0 M = {a, a + d, a + 2d}
{aq^2 = a; aq = a + d; a = a + 2d}
d = 0 与 d < 0 矛盾
2. 当 d = 0 时, M 不是 集合(互异性)
3. 当 d < 0 时, M = {a + 2d, a + d, a + d}, N = {aq^2, aq, a}
{a + 2d = aq^2; a + d = aq; a + d = a}
d = 0 与 d < 0 矛盾
......
当 q = -1, N = {a, -a, a} 不是集合
当 q < -1
if a > 0: M = {a, a + d, a + 2 * d}
N = {aq, a, a(q^2)}
{a = aq; a + d = a; a + 2 * d = a(q^2)}
q = 1(矛盾)
else:
太麻烦了,直接解方程吧
q 可能小于 1 && 不可能等于 0 && q 不可能大于 1 && q 不可能大于 0
即 -1 < q < 0
M = {a, a + d, a + 2d}
特别地,令 q = -0.5, N = {a, -0.5a, 0.25a}
if a > 0:
N = {-0.5a , 0.25a , a}, M = {a, a + d, a + 2d}
else:(即 a < 0 )
N = {a, 0.25a, -0.5a}, M = {a, a + d, a + 2d}
一般地:
#1
if a > 0:
N = {qa , (q^2)a , a}, M = {a, a + d, a + 2d}
#2
else:(即 a < 0 )
N = {a, (q^2)a, qa}, M = {a, a + d, a + 2d}
M = N, 顺序一一对应
#1qa = a①; (q^2)a = a + d②; a = a + 2d③;
由①, q = 1 矛盾
#2a = a①; (q^2)a = a + d②; a = a + 2d③;
d = 0, a = a
M = {a, a, a} (不满足互异性)矛盾
综上 答案是无解即空集
PS:以上解法仅供参考,可能有漏洞。


IP属地:上海1楼2023-08-09 08:03回复
    IP属地:上海2楼2023-08-09 08:10
    回复
      我发现 -0.5 是 对的
      可以令 a = 4, d = -3
      M = {4, 1, -2}, N = {1, -2, 4}
      M = N


      IP属地:上海3楼2023-08-09 08:24
      回复
        晚节不保,最后一步错了
        最后一步与N无关,没有推出矛盾
        所以答案应该是 {x | -1 < x < 0}


        IP属地:上海4楼2023-08-09 08:28
        回复
          发现
          a = -0.1
          好像不对了
          a = 0.6180
          好像也不对


          IP属地:上海5楼2023-08-09 08:40
          回复
            搞笑了,-0.5好像也是错的,自己代错了


            IP属地:上海6楼2023-08-09 08:48
            回复
              q 可能小于 1 && 不可能等于 0 && q 不可能大于 1 && q 不可能大于 0
              即 -1 < q < 0
              M = {a, a + d, a + 2d}
              if a > 0:
              N = (qa, (q^2)a, a)(<), M = {a, a + d, a + 2d}
              if d = 0: 矛盾
              if d > 0: M = (a, a + d, a + 2d)(<)
              if d < 0: M = (a + 2d, a + d, a)(<)
              else:(即 a < 0 )
              N = (a, (q^2)a, qa)(>), M = {a, a + d, a + 2d}
              if d = 0: 矛盾
              if d > 0: M = (a, a + d, a + 2d) (>)
              if d < 0: M = (a + 2d, a + d, a) (>)
              ....
              未完待续


              IP属地:上海7楼2023-08-09 09:10
              回复
                #1 a > 0
                {(M = N)| (qa, (q^2)a, a) = (a, a + d, a + 2d),
                (qa, (q^2)a, a) = (a + 2d, a + d, a),
                }
                qa = a; (q^2)a = a + d; a = a + 2d; 矛盾
                qa = a + 2d; (q^2)a = a + d; a = a; 矛盾
                #2 a < 0
                {(M = N)| (a, (q^2)a, qa) = (a, a + d, a + 2d);
                (a, (q^2)a, qa) = (a + 2d, a + d, a);
                }
                a = a; (q^2)a = a + d; qa = a + 2d; *
                a = a + 2d; (q^2)a = a + d; qa = a; 矛盾
                * 解方程组
                (q^2)a = a + d__________________________①
                qa = a + 2d_________________________②
                由①, 得:q^2 = 1 + d / a______________③
                由②, 得:d = (q - 1) * a / 2__________④
                把④代入③,得:q^2 = 1 + (q - 1) / 2___⑤
                关于q的方程: 解得 q1 = 1(舍去), q2 = -0.5
                综上 答案是 {q| q = -0.5}
                PS:以上解法仅供参考,可能有漏洞。


                IP属地:上海8楼2023-08-09 09:48
                回复
                  应该没错了。这题真麻烦。应该是充要的吧?!


                  IP属地:上海9楼2023-08-09 09:51
                  回复
                    我发现 -0.5 是 对的
                    可以令 a = 4;
                    则 d = -3
                    没错了


                    IP属地:上海10楼2023-08-09 09:55
                    回复
                      15 已知集合M={a,a+d,a+2d},N={a,aq,aq2},其中a≠0,M=N,求q的值.
                      原题目来源:不详,是在百度文库上看到的
                      1 q > 0:
                      1 d > 0
                      a = a ① , a + d = aq ②, a + 2d = aq^2 ③
                      由②:q = (a + d) / a = 1 + d / a ④
                      把④代入③: a + 2d = a * (1 + d / a) <=> 2d = a * (d / a) <=> d = 2d <=> 0 = d ⑤
                      把⑤代入②:q = 1 ⑥ N 不满足 互异性, 矛盾
                      2 d < 0:
                      a + 2d = a ①, a + d = aq ②, a = aq^2 ③
                      由①: d = 0(与 d < 0矛盾)
                      2 q < 0:
                      例如 q = -1 N = {a, -a, a} (不满足互异性)
                      当 a > 0 , a * q < a * (q^2) < a
                      当 d = 0 集合M 不满足互异性
                      当 d > 0: a = aq ① 即(q - 1)a = 0 <=> a = 0 与 题设 矛盾
                      当 d < 0: a + 2d = a * q ① (q - 1) * a = 2d <=> aq - a = 2d <=> q = 2d + 1①
                      a * (q^2) = a + d <=> q^2 = 1 + d/a①
                      a + 2d = a 即 d = 0 与 d < 0 矛盾
                      当 a < 0 , 当 q = 1 时, N 不满足 互异性
                      当 q > 1 时,N = {aq^2, aq, a}
                      1 .当 d > 0 M = {a, a + d, a + 2d}
                      {aq^2 = a; aq = a + d; a = a + 2d}
                      d = 0 与 d < 0 矛盾
                      2. 当 d = 0 时, M 不是 集合(互异性)
                      3. 当 d < 0 时, M = {a + 2d, a + d, a + d}, N = {aq^2, aq, a}
                      {a + 2d = aq^2; a + d = aq; a + d = a}
                      d = 0 与 d < 0 矛盾
                      ......
                      当 q = -1, N = {a, -a, a} 不是集合
                      当 q < -1
                      if a > 0: M = {a, a + d, a + 2 * d}
                      N = {aq, a, a(q^2)}
                      {a = aq; a + d = a; a + 2 * d = a(q^2)}
                      q = 1(矛盾)
                      else:
                      太麻烦了,直接解方程吧
                      q 可能小于 1 && 不可能等于 0 && q 不可能大于 1 && q 不可能大于 0
                      即 -1 < q < 0
                      M = {a, a + d, a + 2d}
                      if a > 0:
                      N = (qa, (q^2)a, a)(<), M = {a, a + d, a + 2d}
                      if d = 0: 矛盾
                      if d > 0: M = (a, a + d, a + 2d)(<)
                      if d < 0: M = (a + 2d, a + d, a)(<)
                      else:(即 a < 0 )
                      N = (a, (q^2)a, qa)(>), M = {a, a + d, a + 2d}
                      if d = 0: 矛盾
                      if d > 0: M = (a, a + d, a + 2d) (>)
                      if d < 0: M = (a + 2d, a + d, a) (>)
                      ....
                      未完待续
                      >>> 思考中。。。
                      #1 a > 0
                      {(M = N)| (qa, (q^2)a, a) = (a, a + d, a + 2d),
                      (qa, (q^2)a, a) = (a + 2d, a + d, a),
                      }
                      qa = a; (q^2)a = a + d; a = a + 2d; 矛盾
                      qa = a + 2d; (q^2)a = a + d; a = a; 矛盾
                      #2 a < 0
                      {(M = N)| (a, (q^2)a, qa) = (a, a + d, a + 2d);
                      (a, (q^2)a, qa) = (a + 2d, a + d, a);
                      }
                      a = a; (q^2)a = a + d; qa = a + 2d; *
                      a = a + 2d; (q^2)a = a + d; qa = a; 矛盾
                      * 解方程组
                      (q^2)a = a + d__________________________①
                      qa = a + 2d_________________________②
                      由①, 得:q^2 = 1 + d / a______________③
                      由②, 得:d = (q - 1) * a / 2__________④
                      把④代入③,得:q^2 = 1 + (q - 1) / 2___⑤
                      关于q的方程: 解得 q1 = 1(舍去), q2 = -0.5
                      综上 答案是 {q| q = -0.5}
                      PS:以上解法仅供参考。


                      IP属地:上海11楼2023-08-09 10:07
                      回复