制造业吧 关注:3,763贴子:15,463
  • 3回复贴,共1

抗疲劳制造了解吗?让你的产品赢在起跑线!

只看楼主收藏回复

中国梦的核心是工业现代化,先进制造业是工业现代化的支柱,高端机械装备制造是强国的标志,直接关系国民经济繁荣、国家安全建设和科技创新战略。第四次工业革命号角的吹响让中国制造业迎来了难得的发展机遇,也面临着前所未有的严峻挑战。不可否认,我国机械制造业取得了令人瞩目的成就,但与世界先进水平相比,仍存在较大差距,“大而不强”是目前不争的事实。提升我国机械制造业的核心竞争力,迈向全球价值链的高端成为机械制造技术中迫切解决的问题,抗疲劳制造技术成为突破困境打造机械强国的关键技术。
在现代工业的各个领域中,大约有50%~90%的金属材料结构强度破坏都是由于疲劳破坏造成的,如轴、曲轴、连杆、弹簧、螺栓、压力容器、轮机叶片和焊接结构等。疲劳失效是无征兆至少说以目前的技术手段无法发现地发生的,且一般说来疲劳破坏时的最大应力远低于材料的抗拉强度,甚至远低于材料的屈服点,因此断裂往往是无明显塑性变形的低应力断裂;因此,这种破坏具有很大的危险性,严重威胁重大设备的正常运行和操作人员的生命,此类事故屡见不鲜。

材料的实际屈服强度、表面应力状态、尺寸效应、冶金缺陷、腐蚀、环境温度等因素都会大大影响工件的疲劳强度或者疲劳寿命。疲劳断裂包括疲劳裂纹萌生,裂纹亚稳扩展及最后失稳扩展三个阶段。材料整体的疲劳寿命是由疲劳裂纹萌生期和裂纹亚扩展期的时间累加而得到。

从机械制造技术上来讲,可以通过使金属材料表面晶粒细化,产生硬化层,引入高残余压应力,减少疲劳应力作用下裂纹的形核并抑制裂纹的早期扩展,可显著提高机械零件的抗疲劳断裂和抗应力腐蚀开裂的能力。豪克能技术是利用激活能和冲击能的复合能对金属零件进行加工,从而获得镜面零件及表面改性的一种新型加工技术;一次加工,解决冷热加工两大领域的六大问题。


IP属地:山东1楼2022-03-05 11:13回复
    但是使用豪克能镜面加工设备,针对机车车轴的轴瓦位置进行表面镜面加工及强化处理,可以大大提高轴瓦强度,延长车轴寿命。以下是为客户处理机车车轴抱轴瓦位置的案例:

    合金钢材质的#机车车轴 ,使用#豪克能 针对轴瓦区进行抛光和强化,代替滚压和抛光,环保高效,加工效率提高2倍以上。

    豪克能镜面加工可以使车轴表面粗糙度提高3级、硬度提高10%,耐磨性能提高1倍以上。
    豪克能,专注金属镜面加工和抗疲劳制造 15665766205


    IP属地:山东2楼2022-03-11 16:19
    回复
      豪克能技术在航空抗疲劳制造中的作用
      豪克能金属镜面加工的目的就是利用复合能量加工,大幅度降低工件表面粗糙度值,减小或消除加工刀痕和擦伤等应力集中点,减小应力集中系数及缺口效应,同时细化金属晶粒、提高工件的表面显微硬度,消除拉应力,预置压应力,*终提高工件的疲劳性能,延长工件的疲劳寿命。
      在传统“成形”制造中,我们往往只重视工件外观形状,不注重疲劳性能等综合力学性能,而豪克能PT 技术应用于基础加工后,金属工件的表面质量和力学性能都得到了提升,其中表面粗糙度比传统的车削、铣削等金切加工方式提高3 个技术等级,可达R a0.2 以下;同时工件表面显微硬度提高20% 以上;预置良好的压应力,消除工件的表面刀纹、应力集中等缺陷;工件的耐腐蚀性提高40% 以上,耐磨性提高50% 以上,豪克能PT 加工后可使零件疲劳寿命提高几十倍。
      抗疲劳制造是控制工件表面完整性,以疲劳性能为主要判据和提高疲劳强度的先进制造技术,它是在不改变零件材料和界面尺寸的前提下,通过在制造工艺过程中改变材料的组织及应力分布状态来提高零部件疲劳寿命的制造技术。这种技术的一个突出特点是不改变零件的结构和材料,不增加材料的重量,但能大幅度提高材料疲劳寿命。抗疲劳制造与成形制造相比,评价加工质量不仅与设计图纸一致,还必须与设计性能一致,在保证工件尺寸、形位公差合格的同时,更加注重工件的疲劳性能。
      抗疲劳制造中一个重要的评价指标是工件表面完整性,表面完整性是零部件加工后表面几何特性和表面物理性质的总称,表面几何特性包括表面粗糙度、波纹度、纹理、擦痕、几何形状和尺寸偏差等技术指标,如果表面粗糙度差,有刀痕,就在工件表面形成一个个的应力集中点,增大了应力集中系数及缺口效应[5](图1 是表面粗糙度R a0.015 工件表面在三维放大后的真实情况),也就形成了疲劳裂纹的萌生源。表面物理性质包括表面层的微观组织、塑性变形、再结晶、显微硬度、残余应力、微观裂纹、应力集中等,属于内部加工效应。

      豪克能金属加工的目的就是利用复合能量加工,大幅度降低工件表面粗糙度值,减小或消除加工刀痕和擦伤等应力集中点,减小应力集中系数及缺口效应,同时细化金属晶粒、提高工件的表面显微硬度,消除拉应力,预置压应力,提高工件的疲劳性能,延长工件的疲劳寿命。


      IP属地:山东3楼2022-03-25 15:28
      回复
        机械加工主要是最终精加工(磨、铰、铣等)决定表面完整性。切削热、切削力和环境因素等在构件表面造成的损伤、表面层组织和残余应力场结构改变, 会严重危害材料的使用寿命和可靠性。研究指出, 不适当的磨削工艺造成轴承钢52100 表面层显微组织损伤和疲劳性能降低[ 13 , 14] 。图1a 表面白亮层是温度超过Ac1点造成的再淬火马氏体, 相邻层是温度低于Ac1点造成的暗黑色过回火马氏体, 中心是未受损伤的原回火马氏体组织。再淬火马氏体层脆性大、残余拉应力高并导致微裂纹产生, 接触疲劳寿命急剧降低, 如图1b 。

        图2 表明, 不适当的磨削工艺在超高强度钢4340 构件表面造成的再淬火马氏体层具有很高的残余拉应力, 疲劳强度和应力腐蚀性能也随之明显降低。即使去除再淬火马氏体层后, 过回火马氏体组织仍将疲劳强度降低约30 %。

        Ti 合金导热性差, 更容易造成磨削表面温度高。如Ti6Al4V 合金磨削时在构件表面层多种损伤, 一是形成硬脆富氧α相薄层造成微裂纹;二是α-β 复合组织转为马氏体和β 条带组织如图3a 、图3b 所示, 这一组织变化还不能通过热处理予以恢复;三是磨粒还可被粘镶在构件表面, 或压入亚表面造成巨大的应力集中等。图3c 中疲劳曲线表明, 不适当的磨削工艺将β 轧制的Ti6Al4V 合金的悬臂弯曲疲劳极限从430 MPa 剧降至90 MPa 。磨削热造成的表面拉应力还促进应力腐蚀开裂, 冷却液残存于表面加剧了应力腐蚀过程。2024 -T351Al 合金不适当车削加工时表面出现宏观微观裂纹、沟槽、坑点和塑性变形等缺陷,尽管表面可能存在压应力, 但疲劳性能仍明显低于高速车削加工。

        图3
        高强度合金抗疲劳应用技术新发展近些年来, 新工艺不断发展, 主要有高速铣削、车削、磨削, 低应力磨削、预拉应力磨削技术;高能表面改性技术(豪克能镜面加工);表面超硬化技术;表面完整性评价和精密定量检测技术;加工过程计算机模拟和预测等。研究发展的主要特点是材料技术融合制造、物理、化学、力学等, 形成一种多学科交叉的工程学科领域。超声喷丸和激光冲击改性技术被誉为20 世纪80 年代以来最重要的应用技术, 其地位可与同期材料界中单晶合金和金属基复合材料相当。激光冲击是一种高能量密度应力波使金属表面层产生胁迫弹塑变形、增加位错密度、提高硬度和疲劳性能等的表面强化方法。研究指出, 激光冲击后7475 -T761 , 30CrMnSiNi2A 的拉-拉疲劳寿命分别提高89 %和74 %[ 15] 。图4 是7075 -T651激光冲击前后的显微组织, 表1 表明, 微动磨损疲劳寿命提高2 个数量级以上。裂纹扩展速率降低到原来的1/1 500 , 但其强化和抗疲劳机理尚不清楚。
        豪克能镜面加工则是近几年高速发展并逐渐广泛应用的新一代抗疲劳加工工艺。利用金属冷塑性原理,通过复合能量对金属表面每秒几万次的超高频冲击,改善金属表层微观构造,形成纳米层,达到降低表面粗糙度并大力提升金属表面硬度、耐磨性耐腐蚀性从而大大增强疲劳寿命。
        高强度合金抗疲劳应用技术发展对策构想长期以来超高强度钢、高强度Al 合金、Ti 合金抗疲劳应用中既缺乏基础理论, 又缺乏技术体系, 甚至缺乏基本工艺实验数据。落后的“成型”制造经验和零散的抗疲劳工艺支撑着构件制造, 以致结构重量大、性能低、寿命短、可靠性差和成本高, 成为其应用制约因素。高强度合金抗疲劳应用技术发展中应着重以下几个方面:1)针对高强度合金固有疲劳强度高、应力集中敏感和构件应用集中普遍存在等基本特点, 从解决应力集中入手, 开展抗疲劳工程科学理论研究,为发展抗疲劳应用技术奠定基础。2)基础实验是发展理论和工艺技术创新的基础。借助工艺过程计算机仿真和预测, 开展工艺基础实验, 建立数据库, 优化工艺, 为建立理论、创新和优化应用技术奠定基础。3)在工程科学理论和实验成果基础上, 引入新思路、新概念, 规范现有技术与创新先进技术相结合, 先进工艺与先进的工艺装备相结合, 建立抗疲劳应用技术体系, 形成高性能合金与先进应用技术相互补充、相互驱动、协调发展的新机制。


        IP属地:山东4楼2022-04-16 14:38
        回复