4、青年问禅师:“我现在遇到了很多很多的困难和烦恼,怎么办?”
禅师说:“你随手画一条曲线,用放大镜放大了看,它还有那么弯曲吗?”
那个青年画了一个魏尔斯特拉斯函数。
魏尔斯特拉斯函数连续但处处不可导,也就是这货本来就没有“曲”的概念
一般人会直觉上认为连续的函数必然是近乎可导的。即使不可导,所谓不可导的点也必然只占整体的一小部分。根据魏尔斯特拉斯在他的论文中所描述,早期的许多数学家,包括高斯,都曾经假定连续函数不可导的部分是有限或可数的。这可能是因为直观上想象一个连续但在不可数个点上不可导的函数是很困难的事。当我们绘制函数的图像时,总会画出较为规则的图形,例如满足利普希茨条件的函数图像。
魏尔斯特拉斯函数可以被视为第一个分形函数,尽管这个名词当时还不存在。将魏尔斯特拉斯函数在任一点放大,所得到的局部图都和整体图形相似。因此,无论如何放大,函数图像都不会显得更加光滑,也不存在单调的区间。