3.概率的产生
尽管有卡尔达诺和伽利略等先驱者的一些非常重要的工作,而概率论历史学家大多赞同这样一个观点:对于数学中一个非常特别的问题的解法的探求成为数学化的概率科学产生的标志之一,这个问题被称作“点问题”。所谓“点问题”是指当游戏在完成前被终止时,怎样处理两名技能相当的游戏者的赌金分配问题,其依据是游戏者的得分数或是游戏终止时的点数。意大利的帕巧利(Luca Pacioli,1445-1509)早在1494年出版的《算术书》(Summa de Arithmetica)一书中,就提到了赌博中常常遇到的“点问题”,他是最早在数学著作中提到点问题的作者。紧接着,卡尔达诺和他的对手塔尔塔利亚 (Nicola Fontana Tartaglia 1499-1557)都讨论过这个问题。然而,所有这些人,对这一问题得出的结论都不正确。直到一百多年后,在1654年,一个名为德.梅勒(de Mere,1607--1684)的法国人把这个问题寄给了当时的数学天才帕斯卡,从此概率论历史上一个决定性的阶段才开始了。
帕斯卡(Blaise Pascal,1623--1662)在早年就表现出了超常的数学能力,在数学史中他被称作“最伟大的天才”(Greatest Might-Have-Been),他曾经对微积分、射影几何、概率论等数学分支做出了巨大的贡献。他拥有如此高的数学天赋和非常敏锐的直觉能力,他理应创造更多的发现。不幸的是,在他生命的大部分时间里,他倍受敏感性神经痛和精神幻觉症的折磨。他于1662年去世时年仅39岁。
与帕斯卡共同分享概率论的创始人的声誉的法国另一位数学家费马(Pierre de Fermat,1601-1665)的一生则充满了喜悦与和平。他的职业是一名律师,他把他大部分的空余时间都献给了数学研究。虽然他没受过什么特别的数学训练,但是在数学这一领域中,却取得了同时代其他数学家不可比拟的重大的发现。他和笛卡尔(Descartes,1596--1650)各自独立地发明了解析几何学,为微积分奠定了技术基础。在十七世纪的数论领域里他的成果最为丰富,以后数论成为一个正式的抽象数学领域与他的工作密不可分。作为一个谦逊朴实的人,他很少发表文章,但是他与当时很多一流数学家不断通信,并在他的同时代人中有相当的影响力。费马的众多重要的贡献丰富了数学的很多领域,所以被称为“业余数学家之王”。